Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation but not long-term depression.

نویسندگان

  • Farima Bouzioukh
  • George A Wilkinson
  • Giselind Adelmann
  • Michael Frotscher
  • Valentin Stein
  • Rüdiger Klein
چکیده

Long-lasting changes in synaptic function are thought to be the cellular basis for learning and memory and for activity-dependent plasticity during development. Long-term potentiation (LTP) and long-term depression (LTD) are two opposing forms of synaptic plasticity that help fine tune neural connections and possibly serve to store information in the brain. Eph receptor tyrosine kinases and their transmembrane ligands, the ephrinBs, have essential roles in certain forms of synaptic plasticity. At the CA3-CA1 hippocampal synapse, EphB2 and EphA4 receptors are critically involved in long-term plasticity independent of their cytoplasmic domains, suggesting that ephrinBs are the active signaling partners. In cell-based assays, ephrinB reverse signaling was previously shown to involve phosphotyrosine-dependent and postsynaptic density-95/Discs large/zona occludens-1 (PDZ) domain interaction-dependent pathways. Which reverse signaling mode is required at hippocampal synapses is unknown. To address this question, we used knock-in mice expressing mutant isoforms of ephrinB2 that are deficient in specific aspects of reverse signaling. Our analysis revealed that tyrosine phosphorylation sites in ephrinB2 are required to mediate normal hippocampal LTP, but not for LTD. Conversely, ephrinB2 lacking the C-terminal PDZ interaction site, but competent to undergo tyrosine phosphorylation, cannot mediate either form of long-term plasticity. Our results provide the first evidence for phosphotyrosine-dependent ephrinB reverse signaling in a neuronal network and for differential ephrinB2 reverse signaling in two forms of synaptic plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Proline-rich tyrosine kinase 2 regulates hippocampal long-term depression.

Proline-rich tyrosine kinase 2 (PYK2), also known as cell adhesion kinase beta or protein tyrosine kinase 2b, is a calcium-dependent signaling protein involved in cell migration. Phosphorylation of residue Y402 is associated with activation of PYK2 and leads to the recruitment of downstream signaling molecules. PYK2 was previously implicated in long-term potentiation (LTP); however, the role of...

متن کامل

Block of 5-HT2 Receptors Enhances Hippocampal Long-Term Potentiation

The effect of endogenous serotonin on long-term potentiation (LTP) in region CAI was studied by blocking 5-HT2 receptors with ketanserin in rat hippocampal slices. Such a block significantly en-hanced long-term potentiation of the CAI population spike induced by high frequency stimulation of the schaffer collateral/ commissural pathway. This implies that serotonin acts on 5-HT2 receptors in CAI...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

Mechanism of TrkB-Mediated Hippocampal Long-Term Potentiation

The TrkB receptor tyrosine kinase and its ligand, BDNF, have an essential role in certain forms of synaptic plasticity. However, the downstream pathways required to mediate these functions are unknown. We have studied mice with a targeted mutation in either the Shc or the phospholipase Cgamma (PLCgamma) docking sites of TrkB (trkB(SHC/SHC) and trkB(PLC/PLC) mice). We found that hippocampal long...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 42  شماره 

صفحات  -

تاریخ انتشار 2007